<table>
<thead>
<tr>
<th>Docket Number:</th>
<th>17-EPIC-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title:</td>
<td>Development of the California Energy Commission Electric Program Investment Charge 2018 “2020 Triennial Investment Plan</td>
</tr>
<tr>
<td>TN #:</td>
<td>216526</td>
</tr>
<tr>
<td>Document Title:</td>
<td>Actions and Planned EPIC DER Research Activities</td>
</tr>
<tr>
<td>Description:</td>
<td>Presentation for Distributed Energy Resources Scoping Workshop</td>
</tr>
<tr>
<td>Filer:</td>
<td>Doris Yamamoto</td>
</tr>
<tr>
<td>Organization:</td>
<td>California Energy Commission</td>
</tr>
<tr>
<td>Submitter Role:</td>
<td>Commission Staff</td>
</tr>
<tr>
<td>Submission Date:</td>
<td>3/13/2017 11:09:54 AM</td>
</tr>
<tr>
<td>Docketed Date:</td>
<td>3/13/2017</td>
</tr>
</tbody>
</table>
Distributed Energy Resources Scoping Workshop

Actions and Planned EPIC DER Research Activities

Mike Gravely

March 13, 2017
EPIC Funding

EPIC Funding: Approximately $120 M/year

- **Applied Research**
 - Energy Efficiency
 - Clean Generation
 - Smart Grid
 - Cost Share for Federal Awards

- **Technology Demonstration and Deployment**
 - Energy Efficiency and Demand Response
 - Clean Energy Generation and Deployment
 - Integration of EE, DR, DG and Smart Grid
 - Cost Share for Federal Awards

- **Market Facilitation**
 - Regulatory Assistance
 - Workforce Development
 - Supporting Entrepreneurs

More info at: www.energy.ca.gov/research/epic/index.html
Advancing California’s Energy Innovation Ecosystem

- Advances California Energy Policy
- Technically Feasible
- Commercially Viable
EPIC First and Second Triennial Investment Plans DER Activities
Value of Grid Services
Itron, Inc. dba IBS- Improving Solar & Load Forecasts: Reducing the Operational Uncertainty Behind the Duck Chart

Over purchase of balancing resources due to forecast error on a cloudy day in 2020

- Improve solar PV and net load forecasts to reduce operational uncertainty for CAISO
- Produce high accuracy forecasts and link them to net load forecasts at higher temporal resolutions
- Enable better integration of intermittent PV generation and lead to savings in regulation and spinning reserve costs

EPIC Funding: $998,926
Match Funding: $453,462
Regents of the University of California, San Diego- *Solar Forecast Based Optimization of Distributed Energy Resources in the LA Basin and UC San Diego Microgrid*

- Integrate solar forecast tools with DERs to increase value
 - Energy storage
 - EV charging integration
 - Demand response
- Utilize ground instrumentation, such as sky imagery, in short-term forecasting
- Provide high ramp-forecasting accuracy with rapid-update and high resolution data features

View of LA Basin with warehouses highlighted in black. Yellow circles represent typical field of views of a sky imager

EPIC Funding: $1,000,000
Match Funding: $164,710
The College of San Mateo Internet of Energy (IoE) Project- The Next Generation of Community Grid Control Services

- Development of a networked energy system, integrating solar PV, electrical storage, and power electronics into a single module with College of San Mateo (CSM) grid control services.

- “Internet of Energy” describes the seamless operation of components on the CSM grid.

- PVS Module features leveraged solar (PV) + storage + power electronics functions over conventional PV and external battery storage.

EPIC Funding: $2,999,601
Match Funding: $2,315,960

The College of San Mateo campus where the networked energy system will be deployed
Los Angeles Cleantech Incubator, Inc.- Los Angeles Regional Energy Innovation Cluster (LA REIC)

- Conduct research and document region’s energy needs
- Develop and commercialize clean energy technology
- Develop an outreach and commercialization support program for clean energy entrepreneurs
- Overcome region’s barriers to achieving California’s statutory energy goals
Cleantech San Diego - San Diego Regional Energy Innovation Cluster

- Organize existing resources to deliver custom service plans to energy entrepreneurs in San Diego
- Overcome critical limitations to the development and commercialization of energy innovations
- Promote economic growth
- Help region meet statutory energy goals

EPIC Funding: $5,000,000
Match Funding: $3,087,760
Energy Commission Microgrid Experience
EPIC Challenge Projects

Berkeley Energy Assurance Transformation (BEAT) Project
Peninsula Advanced Energy Community
Huntington Beach Advanced Energy Community Blueprint
Santa Monica Advanced Energy District
Lancaster Advanced Energy Community (AEC) Project
DER Management Systems

High-level Cloud Coordinator for optimal overall system

Low-level Hub:
- networked embedded intelligence to measure and control power flow, voltage, VAR and other grid attributes

Powernet

Irvine DERMS
Energy Commission Microgrid Experience

Hospital Microgrid

Borrego Springs

Blue Lake Rancheria

Bosch DC Microgrid

Las Positas Campus

City of Fremont Fire Station
Where and how to use DER to avoid or defer generation or grid investments
Regents of the University of California, Irvine- Substation Automation and Optimization of Distribution Circuit Operations

- Explore implementation of a Generic Microgrid Controller at the substation
 - Enhance substation capabilities
 - Improve distribution system management

- Maximize the penetration of renewable resources and DERs
 - Simulate and assess the deployment of fuel cells at the substation

EPIC Funding: $932,718
Match Funding: $112,281
The Zero Net Energy (ZNE) Alliance-
Lancaster Advanced Energy Community Project

- Address capital barriers facing stationary storage and EV adoption
- Develop a community DER valuation framework
 - Plan and permit:
 - Affordable housing project to be a ZNE microgrid
 - Public/private partnership community DER project
 - 4+ MW energy storage
 - 9+ MW solar
 - 30+ electric-buses

Identified sites for ZNE community and community DER demonstrations

EPIC Funding: $1,469,779
Match Funding: $1,500,000
Moving Grid Storage from Emerging Technologies to Commercialization

Assessing where and how DERs may be used to avoid or defer generation or grid investments
Electric Vehicles
Center for Sustainable Energy - Vehicle-Grid Integration in California Using the ISO/IEC 15118 Global Interoperability Standard

- Develop the world’s first standards-based communication platform that directly incorporates the internationally recognized ISO 15118 standard
- Provide the mechanism necessary to successfully manage millions of PEVs
- Consolidate data from multiple inputs and generate grid profiles based on pricing and system constraints

Demand Clearing House (DCP) schematic

EPIC Funding: $1,499,999
Match Funding: $100,000
Andromeda Power, LLC - Grid Communication Interface for Smart Electric Vehicle Services Research and Development

- Develop a communication interface that allows utilities to send dispatch signals to PEVs of any standard in “real time”
- Design communication interface to accommodate the value of current and future grid services
- Develop a data warehouse strategy for the collection of data from applicable sources

InCISIVE bidirectional infrastructure

EPIC Funding: $681,693
Match Funding: $465,000
What Plug-In Electric Vehicles (PEVs) and Plug-In Hybrid Electric Vehicles (PHEVs) are in the V2G fleet?

<table>
<thead>
<tr>
<th>Model</th>
<th>Range Description</th>
<th>General Purpose Fleet Role</th>
<th>Battery Capacity</th>
<th># at Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nissan LEAF Sedan</td>
<td>PEV electric range: 75 miles</td>
<td>23.6 cubic feet cargo</td>
<td>24 kWh</td>
<td>LAASB 13</td>
</tr>
<tr>
<td></td>
<td>fuel efficiency: 99 MPGe</td>
<td>capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ford F-Series Trucks with EVAOS PHEV kite</td>
<td>PHEV electric range: N/A fuel efficiency: 45 MPGe</td>
<td>1500 to 2800 lbs payload</td>
<td>27 kWh</td>
<td>Fort Hood 5</td>
</tr>
<tr>
<td>VIA Motors VTRUX Van</td>
<td>PHEV* electric range: 31 miles fuel efficiency: 38 MPGe</td>
<td>2850 lbs payload (cargo van only)</td>
<td>21 kWh</td>
<td>JB Andrews 4</td>
</tr>
<tr>
<td>Electric Vehicle International (EVI) Range Extended Electric Vehicle (REEV)</td>
<td>PHEV* electric range: 40 miles fuel efficiency: 43 MPGe</td>
<td>5300 lbs payload</td>
<td>54 kWh</td>
<td>JB MDL 8</td>
</tr>
<tr>
<td>Phoenix Motorcars Electric Shuttle</td>
<td>PEV electric range: 100 miles fuel efficiency: 32 MPGe</td>
<td>116 cubic feet cargo capacity</td>
<td>102 kWh</td>
<td></td>
</tr>
</tbody>
</table>

- **PEV**: Plug-In Electric Vehicle
- **PHEV**: Plug-In Hybrid Electric Vehicle
- **EV**: Electric Vehicle
- **REEV**: Range Extended Electric Vehicle

Notes:
- Miles per gallon (MPG), Miles per gallon equivalent (MPGe), Kilowatt-hours (KWh)
- *Fuel used only when electric range exceeded
- **Averaged over 50 miles

Key:
- 5 seats
- 3 seat standard cab
- 6 seats crew cab
- 2 seat cargo
- 12 seat passenger
- 2 seats
- Visitor transport: 12 passengers + driver
Smart Inverters
Electric Power Research Institute- Assessing the Ability of Smart Inverters and Smart Consumer Devices to Enable More Residential Solar Energy

- Test optimal methods by which smart inverters can mitigate issues that limit local high penetrations of residential PV
 - Lab testing and field testing

- Identify how CA Rule 21 can be configured so that multiple smart invertors can work in harmony

- Identify how other consumer devices, EV charging, and storage can coordinate with smart inverters to further enable high-levels of PV penetration

Project configuration to be set up at ATS Laboratory

EPIC Funding: $1,705,478
Match Funding: $891,414
SunSpec Alliance - *Smart Inverter Interoperability Standards and Open Testing Framework to Support High-Penetration Distributed Photovoltaics and Storage*

- Transpose and implement a collection of smart inverters from seven different manufacturers into the grid to standardize smart inverter functions

- Operate 50 residences with PV, storage, and smart inverters in aggregate as a grid resource

- Develop CA Rule 21 test framework and test scripts as described in SIWG Phase 1 & 2 recommendations and open source software tools to enable product development and safety testing

EPIC Funding: $2,000,000
Match Funding: $2,066,875

SunSpec certified smart inverter with open communication interface
Lawrence Berkeley National Laboratory-
Demonstration of Integrated Photovoltaic Systems and Functionality Utilizing Advanced Distribution Sensors

- Use smart inverter control to optimize generation and grid support with Phase 1 functions
- Test advanced PV and storage system at LBNL’s FLEXLAB facility microgrid
 - 13-15 kW PV system
 - 14 kW battery storage
- Use micro-synchrophasor data to support visualization and control applications on distribution circuits, verify functions and how system is working

FLEXLAB simulator facility

EPIC Funding: $1,000,000
Match Funding: $25,000
Data Communications
Electric Power Research Institute- Certified Open-Source Software to Support the Interconnection Compliance of Distributed Energy Resources

- Develop a free, open source communication software that is an IEEE P2030.5 client for smart DER meeting the Rule 21 requirements
- Develop a IEEE 2030.5 certification test procedure associated test software/harness to make compliance testing available for the California Rule 21 Phase 2 requirements

IEEE 2030.5 Communication Client Plan in California

EPIC Funding: $816,539
Match Funding: $243,722
Standardizing Communication Architectures Between the Grid and Electric Vehicles

Data Communications
Transactive Load Management for Demand Response

Electric Vehicles
Next-Generation Grid Communication for Residential PEVs
EPIC Third Triennial Investment Plan
Proposed Initiatives
Supporting DER
Value of Grid Services

- S2.2: Push Low-Carbon Microgrids Closer to Commercial viability
- S2.3: Improve the business Proposition of Integrated Distributed Storage
- S3.2: Enable Electric Vehicle Grid Services
- S3.3: Increase the Value of Distributed Energy Resources and Renewables to the Transmission and distribution System
- S3.4: Define and Demonstrate the Locational Benefits and Optimal Configurations of Grid-Level Storage as the California Grid transitions to More Distributed Energy Resources
- S4.3 Increase the Strategic Value of Flexible CSP and Geothermal to the Electric System
- S8.2 Demonstrate Emerging Clean Energy Technology Solutions in Disadvantaged Communities
DER Management Systems

- S2.3: Improve the business Proposition of Integrated Distributed Storage
- S3.3: Increase the Value of Distributed Energy Resources and Renewables to the Transmission and distribution System
Where and how to use DER to avoid or defer generation or grid investments

- S2.2: Push Low-Carbon Microgrids Closer to Commercial viability
- S2.3: Improve the business Proposition of Integrated Distributed Storage
- S2.4: Incentive DER Adoption through Innovative Strategies at the local level
- S3.1: Accelerate Broad Adoption of Automated Demand Responses Capabilities that Provide the Grid Flexible Response Services
- S3.3: Increase the Value of Distributed Energy Resources and Renewables to the Transmission and distribution System
- S3.4: Define and Demonstrate the Locational Benefits and Optimal Configurations of Grid-Level Storage as the California Grid transitions to More Distributed Energy Resources
Smart Inverters

- S2.3: Improve the business Proposition of Integrated Distributed Storage

- S3.3: Increase the Value of Distributed Energy Resources and Renewables to the Transmission and Distribution System
Electric Vehicles

- S2.3: Improve the business Proposition of Integrated Distributed Storage.
- S3.2: Enable Electric Vehicle Grid Services
Data Communications

• S3.1: Accelerate Broad Adoption of Automated Demand Responses Capabilities that Provide the Grid Flexible Response Services

• S3.2: Enable Electric Vehicle Grid Services

• S3.3: Increase the Value of Distributed Energy Resources and Renewables to the Transmission and distribution System
New Technologies to Reduce Costs of IOU/CAISO Telemetry and Metering Requirements

• S2.3: Improve the business Proposition of Integrated Distributed Storage

• S3.1: Accelerate Broad Adoption of Automated Demand Responses Capabilities that Provide the Grid Flexible Response Services

• S3.2: Enable Electric Vehicle Grid Services
Development of Energy Commission
EPIC 2018-2020 Investment Plan
Workshops

Joint EPIC Workshop – March 14th
California Energy Commission
Written comments:

This workshop is using an electronic commenting system for submitting written comments.

Stakeholders wishing to submit proposed funding initiatives for consideration should complete the form provided on the EPIC docket webpage at:

http://energy.ca.gov/research/epic/17-EPIC-01/comment_directions.html
Written comments should be submitted by 5:00 p.m. on March 20, 2017.

All written comments will become part of the public record of this proceeding.
Discussion